Geometry and Algebra of the Meridian Ellipse

Meridian Ellipse


Ellipsoid of rotation:
x*x*b*b + y*y*b*b + z*z*a*a = a*a*b*b

a: Major semi-axis (O-A), (F-B)
b: Minor semi-axis (O-B)
h: Ellipsoidal elevation (P-R)

f: Semi-focal length (O-F)
f = a*a - b*b = (a + b)*(a - b)

Latitude and longitude:
s: Sine latitude
c: Cosine latitude
p: Sine longitude
q: Cosine longitude
s = kn
c = SQRT(in*in + jn*jn)
p = jn/c
q = in/c

Normal direction cosines:
in = c*q
jn = c*p
kn = s

Prime vertical direction cosines:
ip = -s*q
jp = -s*p
kp = c

Geocentric latitude tangent:
z/x = (s*b*b)/(c*a*a)
t: Tangential plane free term (T-P)
t = -SQRT(a*a*c*c + b*b*s*s)

g: Normal interaxial segment (E-N)
g = f/t

o: Prime vertical free term (O-T)
o = g*s*c

n: Prime vertical radius (N-P)
n = (a*a)/t

l: Normal equatorial depth (E-P)
l = (b*b)/t

m: Meridian radius
m = (n*l)/t

r: Geometric mean of (n, n)
r = (n*b)/t

Coordinates of para-centre (T)
u = g*s*s*c*q
v = g*s*s*c*p
w = -q*s*c*c

Coordinates of surface point (P):
x = (n + h)*c*q = u - in*t
y = (n + h)*c*p = v - jn*t
z = -q*s*c*c = w - kn*t
...